
On Context-Aware Publish-Subscribe

Gianpaolo Cugola
Dip. Elettronica e Informazione

Politecnico di Milano, Italy
cugola@elet.polimi.it

Matteo Migliavacca
Dip. Elettronica e Informazione

Politecnico di Milano, Italy
migliava@elet.polimi.it

ABSTRACT
Complex communication patterns often need to take into
account the characteristics of the environment, or the situ-
ation, in which the information to be communicated is pro-
duced or consumed. Publish-subscribe, and particularly its
content-based incarnation, is often used to convey this in-
formation by encoding the “context” of the publisher into
the published messages, taking advantage of the expressive-
ness of content-based addressing to encode context-aware
communication patterns. In this paper we claim that this
approach is both inadequate and inefficient and propose a
context-aware publish-subscribe model of communication as
a better alternative. In particular, we describe the API
of a new publish-subscribe model that is both content and
context-based, and we explore possible routing schemas to
implement this new model in a distributed publish-subscri-
be system potentially improving traditional content-based
routing.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems

Keywords
Publish-subscribe, Context, Content-Based Routing

1. MOTIVATION
Content-based publish-subscribe [2] provides the ability

of addressing messages based on their content, resulting in
a strong decoupling among communicating parties. On the
other hand, an effective communication paradigm must take
into account the characteristics of the environment, or the
situation, in which the information to be communicated is
produced or consumed, i.e., the communicating parties’ con-
text. As an example, consider a fire monitoring system de-
ployed in a large building. Each room is equipped with
a communication infrastructure connecting multiple sensors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’08, June 2–4, 2008 Rome, Italy
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

subscribe(msgType = Alert ∧
sprinklers myPos.x − 50 ≤ x ≤ myPos.x + 50 ∧

myPos.y − 50 ≤ y ≤ myPos.y + 50)
smoke publish(msgType = Alert,
detectors x = myPos.x, y = myPos.y)
signals subscribe(msgType = Evacuate∗ ∧

x = myPos.x ∧ y = myPos.y)
subscribe(msgType = Alert)

planner publish(msgType = EvacuateL, x < fire.x)
publish(msgType = EvacuateR, x > fire.x)

Table 1: Fire Monitoring System (FMS)

and actuators. Sprinklers subscribe for alert messages gen-
erated within a short distance from their position while de-
tectors publish alerts when they detect smoke (Table 1).

Even this simple example shows how the need of context-
awareness is so common in publish-subscribe applications
that the publisher’s context is usually encoded into mes-
sages, in a tentative to take advantage of the expressiveness
of content-based addressing to encode context-aware com-
munication patterns. We claim that this approach is both
inadequate and inefficient, especially for large scale systems
featuring a distributed dispatcher, thus motivating the adop-
tion of a new publish subscribe model of communication that
takes the context of both publishers and subscribers as an
additional, explicit parameter.

Inversion of Matching. Suppose illuminated signals are
deployed in corridors to direct people in case of evacuation.
An evacuation planning system, according to the alerts re-
ceived, computes an evacuation plan and publishes a mes-
sage toward the signals at the east of the detected fire to
make them display an eastbound arrow, towards an eastern
emergency exit. Similarly, another message is published to-
ward the signals located in the area at the west of the fire
to do the opposite, directing people to the western exit. To
correctly route these messages, the subscribers (i.e., the sig-
nals) should specify their location into subscriptions, while
the publisher (i.e., the planner) should add a constraint into
the messages it publishes to reach the required signals, only
(see the last two rows of Table 1). Unfortunately, this is
not possible in conventional content-based publish-subscri-
be systems where messages are designed to hold single values
for each attribute, while subscriptions contains constraints
on these values. This means that both the data model and
the corresponding matching semantics of traditional con-
tent-based publish-subscribe systems are unsuited for the
case under consideration, which should be“reversed” to cope
with the case we consider1.

1The few content-based publish-subscribe systems that do

subscribe(msgType = Alert;
sprinklers myPos.x − 50 ≤ x ≤ myPos.x + 50 ∧

myPos.y − 50 ≤ y ≤ myPos.y + 50)
smoke setContext({x = myPos.x, y = myPos.y}),
detectors publish({msgType = Alert, x = myPos.x,

y = myPos.y}; ALL)
signals setContext({x = myPos.x, y = myPos.y}),

subscribe(msgType = Evacuate∗; ALL)
subscribe(msgType = Alert; ALL)

planner publish({msgType = EvacuateL}; x < fire.x)
publish({msgType = EvacuateR}; x > fire.x)

Table 2: FMS using Context-Aware API

Efficiency. The second reason to explicitly introduce con-
text into publish-subscribe is efficiency in distributed dis-
patching scenarios. Dealing explicitly with context allows
to limit the spreading of subscriptions only to those areas of
the routing network where matching publishers exist (i.e.,
those whose context satisfies the context filter specified by
the subscriber). This reduces the overhead of the subscrip-
tion and unsubscription processes (saving bandwidth), while
also reducing the time required to match messages, since the
routing tables are smaller.

2. API AND ROUTING
To overcome the limitations above, we propose to intro-

duce context-awareness into the publish-subscribe API. Each
client n ∈ N can set its current context c ∈ C by invok-
ing a special setContext(c) operation. Additionally, n can
publish messages m ∈ M for subscribers whose context
matches the context filter fctx by invoking the operation
publish(m; fctx). Similarly, n can subscribe to messages
matching the content filter fmsg and coming from publish-
ers whose context matches the context filter fctx through
the operation subscribe(fmsg ; fctx), while the operation
unsubscribe(fmsg ; fctx) does the opposite. Finally, when
the client n receives a message m, the publish-subscribe ser-
vice invokes a receive(m) callback. Table 2 shows how the
Fire Monitoring System example can be easily implemented
with these context-aware publish-subscribe primitives.

Routing Approaches. In context-aware publish-subscribe
message delivery is determined by three factors: the context
of the publisher cp, the context of the subscriber cs, and
the content of the message m. Each of these elements must
match a corresponding filter: the content filter fmsgs

and the
context filter fctxs

set by the subscriber, plus the context fil-
ter fctxp

set by the publisher. Starting from the observation
that this match can be completed only when the message is
published, we might devise three routing approaches. The
first one is to diffuse (cp, m, fctxp

) from the publisher toward
the potential subscribers when the message m is published
(publisher forwarding), filtering these publications when
they reach the subscriber’s broker2. However, without any
knowledge about which brokers host possible matching sub-
scriptions, such publications must flood the network to reach
the subscribers’ brokers, where matching happens. This sit-
uation can be improved by diffusing (cs, fmsgs

, fctxs
) infor-

mation from the subscriber when a subscription is issued
(subscriber forwarding), thus establishing routes to be

not suffer of this problem are those adopting a Turing-
complete language to implement filters, which however are
hard to optimize [1]
2We suppose that each broker stores the relevant informa-
tion (i.e., contexts and filters) of the clients it serves.

followed back by messages. As in the previous case, since the
brokers hosting clients whose context matches the context
filter fctxs

are not known a priori, such subscriptions must
flood the network. This can be avoided by diffusing con-
textual information before any subscription is issued: each
broker forwards the context of the attached clients in the
network, thus establishing “context” routes that will be used
to forward both subscriptions and messages. Subscriptions
are steered accordingly reaching only those brokers holding
clients with matching contexts, thus establishing “subscrip-
tion” routes to be followed back by messages. This approach
(context forwarding) has two advantages over the pre-
vious ones: it reduces the overhead of subscribing (since
subscriptions are routed only toward clients with matching
contexts) and reduces the time required to match messages,
since the context of the publisher has been already (i.e., at
subscription time) been matched against the context filter
of the subscriber. Of course, if the context of clients changes
frequently, this approach, which require this information to
be flooded, may become inefficient.

The description above, even if very abstract, allow us to
make some initial comparisons about the three routing ap-
proaches. In particular, publisher forwarding incurs a lot of
overhead to route messages, on the other hand it does not
forward around any other information. As a consequence,
it provides the best performance in situations in which sub-
scriptions and contexts change very frequently. The second
approach requires subscriptions to be flooded, so it is suited
to situations in which contexts and interests of clients do
not change frequently, at least w.r.t. the frequency of pub-
lications. The third approach is perfect when contexts are
fairly static. It minimizes the cost of subscribing and also
that of publishing, at the price of an overhead to keep con-
text information up to date.

3. CONCLUSION
In most of the scenarios in which publish-subscribe is used,

the context, being that of the publisher or that of the sub-
scriber, would be a useful information, if available, to limit
the scope of communication.

Content-based publish-subscribe is a very expressive model
of communication but it cannot entirely capture truly context-
aware communications patterns. To overcome this limita-
tion, we proposed a context-aware extension to the publish-
subscribe model of communication. Our short term goal is to
show how it can be efficiently implemented in a distributed
publish-subscribe system, and to test to which degree it can
outperform traditional content-based routing protocols in
medium to large scale scenarios whenever contextual infor-
mation is used by publishers and subscribers.

4. REFERENCES
[1] G. Mühl and L. Fiege. Supporting covering and

merging in content-based publish/subscribe systems:
Beyond name/value pairs. IEEE Distributed Systems
Online (DSOnline), 2(7), 2001.

[2] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, 2006.

