Event-based integration using on-the-fly matching

Anders Moen Hagalisletto
Birkeland Innovation, University of Oslo
Norwegian Computing Center Norway

andersmo@ifi.uio.no

1. INTRODUCTION

Integration of applications is costly and cumbersome. Inte-
gration strategies based on standardization, common inter-
faces or hubs alleviate the situation somewhat, but at the
cost of reduced functionality at the interface to the least
common multiple [2]. In this paper, we propose an ap-
proach that automates the integration by matching incom-
ing messages at runtime. The core of the approach is an
efficient pattern matching [1] algorithm based on abstract,
event-based state machines, which we describe in this paper.
The method is illustrated by two agents running a session
of Blackjack on the Internet. Initially incompatible agents
synchronize their implementations at runtime with minimal
computational cost. On-the-fly event-based integration thus
comes across as a promising technology for automating ex-
isting manual and expensive processes.

2. DISTRIBUTED BLACKJACK

As a case study we have specified a scenario consisting of
mobile phones with player agents that connect to a server,
hosting the role of a dealer at a casino. The players and
the dealer all have their own, unique implementation of the
application. They have different commands, and potentially
different interpretations of the game’s rules. For convenience
we assume that some basic concepts, like decks of cards and
chips (for betting) are uniformly represented as universal
types, albeit with different representations of the commands
that deal with these entities.

Blackjack is a simple game, which involves betting between
the the player and the bank about getting a score of the
cards that is closest to 21, by drawing cards from a deck
comprising multiples of 52 standard playing cards. An ace
scores either a 1 or 11, kings, queens and jacks count 10 and
all other cards maintain their numerical value. The demon-
strator presented in this paper follows standard Blackjack
with minor and insignificant exceptions.

Steinar Kristoffersen
@stfold University College
Halden, Norway
steinkri@ifi.uio.no

msg BUSTROUND
from DEAL to A

msg GETCARD DEAL wildcard(CARD)

msg GETCARD
fromDEAL to A

A wildcard(DECK)
from DEAL to A

msg dealer
GETCARD DEAL
wildcard(CARD)
from DEAL to A

dealerplay_ X

msg JOINGAME
from A to DEAL

'msg DONE
from DEAL to A

play .

start

msg GETCARD
A wildcard(CARDX)
from DEAL to A

msg STANDROUND A
from A to DEAL

from A to DEAL

evaluate .

msg REQUESTGA

from A to DEAL
‘msg STANDROUND A msg BUSTROUND
stand from DEAL toA dealerplay2 from DEAL to A
msg WIN A wildcard(VALUE)
msg refresh fromDEAL to A
from DEAL to A
msg LOOSE A

from DEAL to A
submit

presubmit
msg THROWCARDS DEAL wildcard(DECK)

from DEAL to A msg THROWCARDS A wildcard(DECK)

from DEAL to A

Figure 1: Dealer’s application graph.

2.1 The application graphs

The application graphs, which represent the abstract be-
haviour of each application, can be conceptualized as finite
state machines. Figure 1 shows a dealer’s perspective of the
Blackjack game. In the beginning the dealer is waiting for
agents that register for a game session. The dealer DEAL
must receive the message

msg JOINGAME from A to DEAL

from the player A in order to proceed. The current game
may include several players, therefore the dealer gives pairs
of cards to all the participants as described by the reflex-
ive transition in the ready state. After the initial deal-
ing of cards the dealer picks two cards in a similar way
({ready, dealerplay)), and in state dealerplay, there are three
options. Either the player stands, busts or requests and gets
one more card. When the players are done with their ac-
tive part, the dealer notifies the players by sending a DONE
message, and the initiative of the game is transferred to
the dealer in state play. The dealer has now three options.
Either to get one single card, since the current card value
permits it, or stand since it is too risky to pick another
card, or bust if the value of the deck is exceeding 21. In
the two latter cases, the participants in the game are ready
to evaluate. There are two options, either the player wins

or the player looses, and the result of the evaluation is sent
to the player. Finally the table is closed, the players throw
their cards {presubmit,submit) and then the dealer throws
the cards {(submit,end). The player might want to play an-
other round, this is captured by the final transition,

msg refresh from DEAL to A.

Observe that this final event is an internal event: Despite
the fact that the message looks like a transmission from
DFEAL to A, no message is sent. The matching may ensure
that the matches that have been made are not reset, so that
they can instead be used for preparing the host application
for the matching of potentially new rounds of Blackjack.

3. APPLICATION GRAPH MATCHING

When two agents synchronize their behaviour in a message-
oriented framework, they rely on the application graphs to
decide that a reduced subset of possible matches are, indeed,
possibly legal.

Formally, an application graph is a four-tuple A = {I, N, E,U),

consisting of the name of the application I, a finite set
of nodes N, a set of transitions (edges) E, and a desig-
nated node U, called the current node. Hence formally
N = {n1,...,ng}, U € N, and each transition e € F is
of the form {(n;,n;, (msg C from a to b)), where n;,n; € N,
a,b are agent names and C' € .Z. The message content is
interpreted as a sequence of basic elements. Two sequences
of message contents C'1 and C> are compared with respect to
the current matching table T' = (T, b) and the state of the
application graph A = {(a, N, F, u). Hence, first all the tran-
sitions starting from wu is collected into the set of potential
matching candidates. Then each transition is matched with
the current concrete message, using the function matchC?.

DEFINITION 1. The function matchC? takes two message
contents C1 and Ca, and a matching table T as input and
returns true if the contents match:

(1) matchC?(Cy,C1,T) =
(17) matchC?(e1,e2,T) = con(<61,62>,T)
(’Lll) matchC7(el_C1,eg CQ,T)
matchC?(e1, e2, T') A matchC?(C1,C2, T)

The first clause states that identical message contents match.
The second clause says that two basic elements e; and es
match if the matching pair {e1, e2) can be consistently added
to the matching table T'. The final clause states that com-
posite message contents are matched from left to right. If
a message matches with any of the application graph’s cur-
rent state-transitions or the existing matches that were made
previously, then the matching can be executed. In practice
this means that (7) the matching table is updated with pos-
sibly new matching pairs, (i7) that the application graph
is adjusted to contain names of other agents and the in-
dexes of any variables are reset and (4i7) that the message
is translated into the host component’s language, based on
the matching table E. The execution of matching inside an
agent, denoted M(C4, C2,{b, T, A, W,t), matches two con-
tents C1 (message content) and Cy (graph content) with
respect to its application graph.

DEFINITION 2. Suppose that a is the host agent and b is

the communicating component. Then perform match is de-
fined by:
(i) M(e, e, br,{a, N,E U {{n1,n2, msgC from t1 to t2 i),
W,{n1,n2, msg C from t3 to t3')) =
{br} U {¢a, N, B U {(n1, ng, msg C from 7! to 35}, n2)}
if tf =avit, =a
(17,) M(e_ Ci,e_Co,br, A, W, t) = M(Cl, Co,bp, A, W, t)
(i41) M(e1—Ci,ea_Co,{T, by, A,W,t) =
M(C1, C2,<b, {{e1, e2)} L T, A, W, t)
if e1 # ea A —wildcard?(es)
(iv) M(e1—C1, we(w)—C2,<T, by,
{b,N,E U {{ni,n2, msg C from tf to t?)},nﬁ,
weg(G), msg C from tf to ty) =
M(C1, C2,<b, {{e1, *(w, G + 1))} v T,
(b, N, E U {{n1,n2,
msg sub((x(w, G+1), we(w)), C) from ¢ to t5D}, n1),
weg(G + 1), msgsub((x(w, G +1), we(w)), C) from t£ to t4)
if tf =avit, =a

The algorithm can be explained as follows: Clause (7): If
both message contents are empty, then the matching has
succeeded and the current pointer is moved to the next state
n2. The condition expresses that the active transition might
involve send or receive events. If the message contents Ci
and C3 are non-empty, then there are three cases: Clause
(i1): In case of two matchable messages, then continue to
match the remaining contents. Clause (#¢): If the initial ele-
ments are different and the second element is not a wildcard,
then it is added to the table before proceeding the match.
Clause (iv): If the initial element in the the graph part of
the content is a wildcard, then the wildcard is refreshed, and
the message element is matched with the refreshed message
element. This regards both send and receive events.

4. LESSONS LEARNED

A specification of the game Blackjack was used to calibrate
the matching algorithm. A scenario with one player and a
casino was implemented, including a network (asynchronous
communication) and a standard stock of 52 cards. With the
pertaining application graphs, an initial request from the
client to join the game resulted in a simulation where the
casino used all the cards in totally eight and a half rounds.
In the end the casino ran out of cards. The matching session
resulted in 9 matching tables, where the first eight captured
the successful matchings, while the final one resulted in an
incomplete match.

Future work will describe how the framework can be used to
synchronize several agents that communicate using distinct
notations for the data elements, as well as backtracking to
repair mismatching, arising from nondeterminism.

5. REFERENCES
[1] Peter Norvig. Paradigms of Artificial Intelligence

Programming: Case Studies in Common Lisp. Morgan
Kaufmann Publishers, Inc, 1992.

[2] Jeff Sutherland and Willem-Jan van den Heuvel.
Enterprise application integration and complex
adaptive systems. Commun. ACM, 45(10):59-64, 2002.

